Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13044, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915101

RESUMO

The stiffness of a plant cell in response to an applied force is determined not only by the elasticity of the cell wall but also by turgor pressure and cell geometry, which affect the tension of the cell wall. Although stiffness has been investigated using atomic force microscopy (AFM) and Young's modulus of the cell wall has occasionally been estimated using the contact-stress theory (Hertz theory), the existence of tension has made the study of stiffness more complex. Elastic shell theory has been proposed as an alternative method; however, the estimation of elasticity remains ambiguous. Here, we used finite element method simulations to verify the formula of the elastic shell theory for onion (Allium cepa) cells. We applied the formula and simulations to successfully quantify the turgor pressure and elasticity of a cell in the plane direction using the cell curvature and apparent stiffness measured by AFM. We conclude that tension resulting from turgor pressure regulates cell stiffness, which can be modified by a slight adjustment of turgor pressure in the order of 0.1 MPa. This theoretical analysis reveals a path for understanding forces inherent in plant cells.


Assuntos
Parede Celular , Células Vegetais , Parede Celular/fisiologia , Módulo de Elasticidade , Elasticidade , Microscopia de Força Atômica/métodos , Cebolas , Células Vegetais/fisiologia
2.
Plant Biotechnol (Tokyo) ; 37(4): 475-480, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33850437

RESUMO

Environmental stimuli such as gravity and light modify the plant development to optimize overall architecture. Many physiological and molecular biological studies of gravitropism and phototropism have been carried out. However, sufficient analysis has not been performed from a mechanical point of view. If the biological and mechanical characteristics of gravitropism and phototropism can be accurately grasped, then controlling the environmental conditions would be helpful to control the growth of plants into a specific shape. In this study, to clarify the mechanical characteristics of gravitropism, we examined the transverse bending moment occurring in cantilevered pea (Pisum sativum) sprouts in response to gravistimulation. The force of the pea sprouts lifting themselves during gravitropism was measured using an electronic balance. The gravitropic bending force of the pea sprouts was in the order of 100 Nmm in the conditions set for this study, although there were wide variations due to individual differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...